

Joint Classification and Reconstruction of Irregularly Sampled Satellite Multivariate Image Times Series

JOURNÉE RESSTE: STATISTIQUES SPATIO-TEMPORELLES POUR LES DONNÉES ISSUES DE LA TÉLÉDÉTECTION

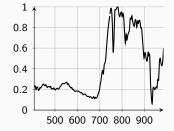
Alexandre Constantin $^{(1)}$, Mathieu Fauvel $^{(2)}$ et Stéphane Girard $^{(1)}$ 9 May 2022

(1) Statify team, Inria Grenoble Rhône-Alpes
 (2) CESBIO, Université de Toulouse, CNES/CNRS/INRAe/IRD/UPS, Toulouse, FRANCE

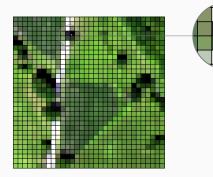
- 1. Satellite Image Time Series for Earth Observation
- 2. Mixture of Multivariate Gaussian Processes
- 3. Experimental results
- 4. Conclusions et prospects

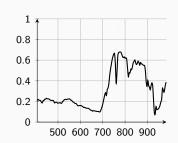
Satellite Image Time Series for Earth Observation

A remote sensing image is a sampling of a spatial, temporal and spectral process.

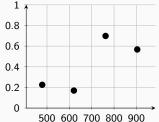


A remote sensing image is a sampling of a spatial, temporal and spectral process.

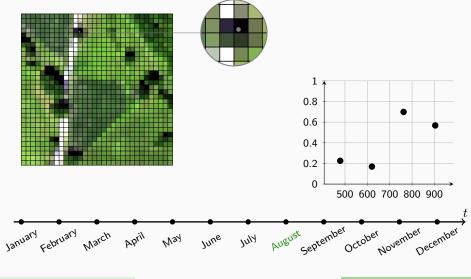




A remote sensing image is a sampling of a spatial, temporal and spectral process.



A remote sensing image is a sampling of a spatial, temporal and spectral process.



CESBIO

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

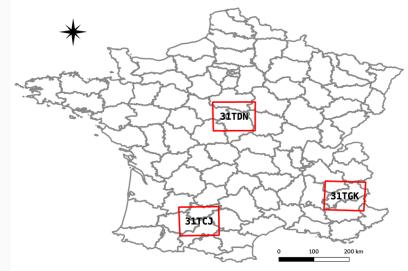
- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

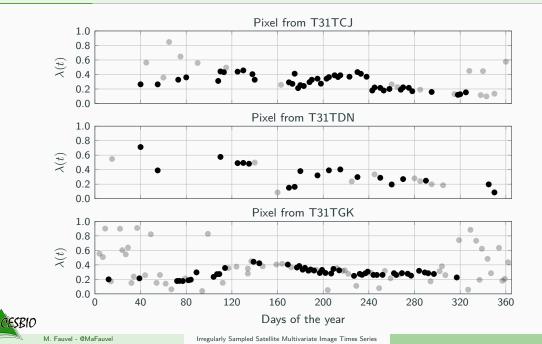
- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

- High spatial resolution (10m)
- 13 spectral bands
- Revisit every 5 days
- Free and open source data

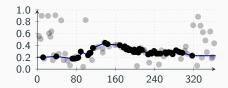
Irregularly sampled SITS



Irregularly sampled SITS



Pixel-wise classification of SITS



Input feature

$$\mathbf{x} = \begin{bmatrix} \lambda_1(t_1), \dots, \lambda_1(t_T), \dots, \lambda_{10}(t_T) \\ \mathsf{si}_1(t_1), \dots, \mathsf{si}_p(t_T) \dots \end{bmatrix}$$

• Each sample is associated with class membership $Z, Z \in \{1, \dots, C\}$

CESBIO

Limitation of (some) current approaches

Two-step approaches might not be optimal w.r.t. final objective

- Resampling: reconstruction error
- Classification: likelihood, hindge loss

Limitation of (some) current approaches

Two-step approaches might not be optimal w.r.t. final objective

- Resampling: reconstruction error
- Classification: likelihood, hindge loss

Objectives

- Classification of raw and irregularly sampled SITS
- Scale well w.r.t. the number of samples

Limitation of (some) current approaches

Two-step approaches might not be optimal w.r.t. final objective

- Resampling: reconstruction error
- Classification: likelihood, hindge loss

Objectives

- Classification of raw and irregularly sampled SITS
- Scale well w.r.t. the number of samples

Contribution

- Multivariate Gaussian Processes
- Bayesian classification and imputation

Mixture of Multivariate Gaussian Processes

This section is based on

Alexandre Constantin, Mathieu Fauvel, Stéphane Girard. Mixture of multivariate gaussian processes for classification of irregularly sampled satellite image time-series. [CFG21b]

Mixture of Multivariate Gaussian Processes Definition

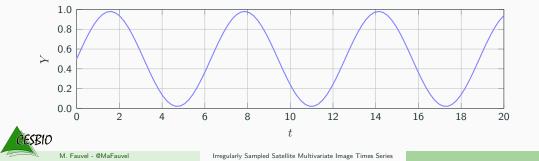
Gaussian Processes

Definition

A Gaussian process (GP) is a stochastic process such that any finite-dimensional marginal follows a multivariate Gaussian distribution [RW05].

 $Y \sim \mathcal{GP}(m, K), \ Y(t) \in \mathbb{R}$

$$\begin{split} m(t) &= \mathbb{E}[Y(t)]\\ K(t,t') &= \mathbb{E}[(Y(t)-m(t))(Y(t')-m(t'))] \end{split}$$



Gaussian Processes

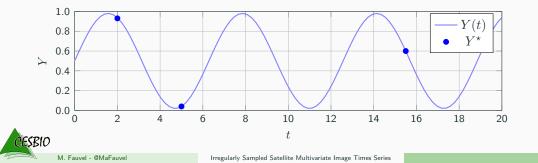
Definition

A Gaussian process (GP) is a stochastic process such that any finite-dimensional marginal follows a multivariate Gaussian distribution [RW05].

 $Y \sim \mathcal{GP}(m, K), \ Y(t) \in \mathbb{R}$

For Y observed at t_1, t_2, t_3 :

$$\begin{array}{c} m(t) = \mathbb{E}[Y(t)] \\ K(t,t') = \mathbb{E}[(Y(t) - m(t))(Y(t') - m(t'))] \\ K(t,t') = \mathbb{E}[(Y(t) - m(t))(Y(t') - m(t'))] \\ \end{array} \qquad \left[\begin{array}{c} Y^{*}(t_{1}) \\ Y^{*}(t_{2}) \\ Y^{*}(t_{3}) \end{array} \right] \sim \mathcal{N}_{3} \left(\begin{bmatrix} m(t_{1}) \\ m(t_{2}) \\ m(t_{3}) \end{bmatrix}, \begin{bmatrix} K(t_{1},t_{1}) & \dots & K(t_{1},t_{3}) \\ \vdots & \ddots & \vdots \\ K(t_{3},t_{1}) & \dots & K(t_{3},t_{3}) \end{bmatrix} \right)$$



Definition

The matrix-variate normal distribution $\mathcal{MN}_{p,q}$ [Daw81] is defined for all $p \times q$ random matrices \mathbf{Y}^{\star} as:

$$\mathbf{Y}^{\star} \sim \mathcal{MN}_{p,q}(\mathbf{M}, \boldsymbol{\Sigma}, \boldsymbol{\Lambda}) \text{ if and only if } \operatorname{vec}(\mathbf{Y}^{\star}) \sim \mathcal{N}_{pq}(\operatorname{vec}(\mathbf{M}), \boldsymbol{\Sigma} \otimes \boldsymbol{\Lambda}),$$

where M is a $p \times q$ matrix, Σ and Λ are symmetric positive definite matrices of size $q \times q$ and $p \times p$ respectively.

• If
$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$
 then $\operatorname{vec}(\mathbf{M}) = [m_{11}, m_{21}, m_{12}, m_{22}]^{\top}$
• Konecker product: $\mathbf{\Sigma} \otimes \mathbf{\Lambda} = \begin{bmatrix} \sigma_{11}\mathbf{\Lambda} & \cdots & \sigma_{1q}\mathbf{\Lambda} \\ \vdots & \ddots & \vdots \\ \sigma_{q1}\mathbf{\Lambda} & \cdots & \sigma_{qq}\mathbf{\Lambda} \end{bmatrix}$
• PDF: $p(\mathbf{Y}^{\star}) = (2\pi)^{-pq/2} |\mathbf{\Sigma}|^{-p/2} |\mathbf{\Lambda}|^{-q/2} \exp\left(-\frac{1}{2}\operatorname{tr}\left[\mathbf{\Lambda}^{-1}(\mathbf{Y}^{\star} - \mathbf{M})\mathbf{\Sigma}^{-1}(\mathbf{Y}^{\star} - \mathbf{M})^{\top}\right]\right)$

Mixture of Multivariate Gaussian Processes Mixture Model

Multivariate Gaussian Processes (MGP)

Definition

We define a Multivariate Gaussian Processes/ (MGP)^{*a*}, conditionally to Z = c, as

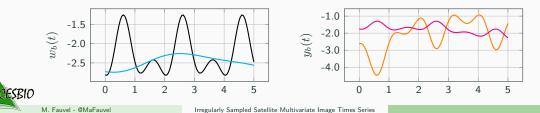
 $\mathbf{Y}(t) = \mathbf{A}_{c} \mathbf{W}_{c}(t) + \mathbf{m}_{c}(t)$

with $\mathbf{Y}(t) \in \mathbb{R}^p$, $\mathbf{W}_c(t) \in \mathbb{R}^p$, $\mathbf{m}(t) \in \mathbb{R}^p$, $\mathbf{A}_c \in \mathbb{R}^{p \times p}$ and

$$\begin{cases} W_{cb} \mid Z = c \sim \mathcal{GP}(0, \mathbf{K}_c), \forall \ b \in \{1, \dots, p\}, \\ W_{cb} \perp W_{cb'}, \forall \ b, b' \in \{1, \dots, p\}^2. \end{cases}$$

We write $\mathbf{Y}|Z = c \sim \mathcal{MGP}_p(\mathbf{m}_c, K_c, \mathbf{A}_c)$

^aSpecial case of *Linear Model of Coregionalization* [Goo97]



Definition

We define the Mixture of MGP (M2GP) as

$$\mathbf{Y} \sim \sum_{c=1}^{C} \mathbb{P}(Z=c) \mathcal{MGP}_p(\mathbf{m}_c, K_c, \mathbf{A}_c)$$

Proposition

If $\mathbf{Y} \sim M2GP$ then $\mathbf{Y}^{\star} = [\mathbf{Y}(t_1), \dots, \mathbf{Y}(t_q)]$ is a $p \times q$ random matrix such as:

$$\mathbf{Y}^{\star} | Z = c \sim \mathcal{MN}_{p,q}(\mathbf{M}_c, \mathbf{\Sigma}_c, \mathbf{A}_c \mathbf{A}_c^{\top}),$$

with

PESBID

• $\mathbf{M}_c = (\mathbf{m}_c(t_1), \dots, \mathbf{m}_c(t_q)),$

• Σ_c is the covariance matrix defined by $\Sigma_{c_{l,l'}} = K_c(t_l, t_{l'})$ for all $(l, l') \in \{1, \ldots, q\}^2$. Equivalently: $\operatorname{vec}(\mathbf{Y}^*)|Z = c \sim \mathcal{N}_{pq}(\operatorname{vec}(\mathbf{M}_c), \Sigma_c \otimes \mathbf{A}_c \mathbf{A}_c^{\top})$.

Model parameters

Parametric mean

• \mathbf{m}_c is modeled by a weighted sum of J basis functions $\{\varphi_j\}_{j=1}^J$

$$\mathbf{m}_{c,b}(t) = \sum_{j=1}^{J} \boldsymbol{\alpha}_{c,b,j} \varphi_j(t)$$

• Let B be the design matrix of size $J \times q$ and $\boldsymbol{\alpha}_c = [\boldsymbol{\alpha}_{c,1}, \dots, \boldsymbol{\alpha}_{c,p}]^\top$ a matrix of size $p \times J$ then

$$\mathbf{M}_c = \boldsymbol{\alpha}_c \mathbf{B}$$

Parametric kernel

K is chosen in a set of parametric kernel indexed by θ :

 $\Sigma_c = \Sigma(\theta_c)$

Reparametrization

 $\mathbf{Y}^{i,\star}|Z^{i} = c \sim \mathcal{MN}_{p,q_{i}}\left(\boldsymbol{\alpha}_{c}\mathbf{B}^{i},\boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}),\mathbf{A}_{c}\mathbf{A}_{c}^{\top}\right)$

PESRID

Mixture of Multivariate Gaussian Processes Inference

• Let $S = {\mathbf{Y}^{i,\star}, Z^i}_{i=1}^n$ a set of n *i.i.d.* samples.

• Optimal $(\boldsymbol{\alpha}_{c}, \boldsymbol{\theta}_{c}, \mathbf{A}_{c}\mathbf{A}_{c}^{\top})$ are found by minimizing the *nll*

$$\ell(\boldsymbol{\alpha}_{c},\boldsymbol{\theta}_{c},\mathbf{A}_{c}\mathbf{A}_{c}^{\mathsf{T}}) = p \sum_{i|Z^{i}=c} \log |\boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c})| + n_{c} \log |\mathbf{A}_{c}\mathbf{A}_{c}^{\mathsf{T}}| + \operatorname{tr} \left[\sum_{i|Z^{i}=c} (\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}\mathbf{B}^{i}) \{\boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c})\}^{-1} (\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}\mathbf{B}^{i})^{\mathsf{T}} \{\mathbf{A}_{c}\mathbf{A}_{c}^{\mathsf{T}}\}^{-1} \right] + \kappa$$

■ Solve *C* independent minimization problems

Iterative algorithm

Iterate the following steps until convergence:

1. α_c update:

$$\boldsymbol{\alpha}_{c}^{(k+1)} = \left[\sum_{i|Z^{i}=c} \mathbf{Y}^{i,\star} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right] \left[\sum_{i|Z^{i}=c} \mathbf{B}^{i} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right]^{-1}$$

Iterative algorithm

Iterate the following steps until convergence:

1. α_c update:

$$\boldsymbol{\alpha}_{c}^{(k+1)} = \left[\sum_{i|Z^{i}=c} \mathbf{Y}^{i,\star} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right] \left[\sum_{i|Z^{i}=c} \mathbf{B}^{i} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right]^{-1}$$

2. $\mathbf{A}_{c}\mathbf{A}_{c}^{\top}$ update:

$$\left(\mathbf{A}_{c}\mathbf{A}_{c}^{\top}\right)^{(k+1)} = \frac{1}{n_{c}} \sum_{i|Z^{i}=c} \left(\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}^{(k+1)}\mathbf{B}^{i}\right) \left\{\boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)})\right\}^{-1} \left(\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}^{(k+1)}\mathbf{B}^{i}\right)^{\top}$$

Iterative algorithm

Iterate the following steps until convergence:

1. α_c update:

$$\boldsymbol{\alpha}_{c}^{(k+1)} = \left[\sum_{i|Z^{i}=c} \mathbf{Y}^{i,\star} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right] \left[\sum_{i|Z^{i}=c} \mathbf{B}^{i} \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} \mathbf{B}^{i^{\top}} \right]^{-1}$$

2. $\mathbf{A}_{c}\mathbf{A}_{c}^{\mathsf{T}}$ update:

$$\left(\mathbf{A}_{c}\mathbf{A}_{c}^{\top}\right)^{(k+1)} = \frac{1}{n_{c}} \sum_{i|Z^{i}=c} \left(\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}^{(k+1)}\mathbf{B}^{i}\right) \left\{\boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)})\right\}^{-1} \left(\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}^{(k+1)}\mathbf{B}^{i}\right)^{\top}$$

3. θ_c update:

$$\boldsymbol{\theta}_{c}^{(k+1)} = \boldsymbol{\theta}_{c}^{(k)} - \gamma_{k} \nabla_{\boldsymbol{\theta}_{c}} \ell_{c}$$

$$\nabla_{\boldsymbol{\theta}_{c}} \ell_{c} = \sum_{i|Z^{i}=c} \operatorname{tr} \left[\left(p \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)}) \right\}^{-1} - \boldsymbol{\beta}_{c}^{i^{\top}} \left(\mathbf{A}_{c} \mathbf{A}_{c}^{\top} \right)^{(k+1)} \boldsymbol{\beta}_{c}^{i} \right) \frac{\partial \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{(k)})}{\partial \boldsymbol{\theta}_{c}} \right]$$

$$\boldsymbol{\beta}_{c}^{i} = \left(\mathbf{Y}^{i,\star} - \boldsymbol{\alpha}_{c}^{(k+1)} \mathbf{B}^{i} \right) \left\{ \boldsymbol{\Sigma}^{i}(\boldsymbol{\theta}_{c}^{k}) \right\}^{-1}$$

-

ESBID

Mixture of Multivariate Gaussian Processes Classification and Imputation

- New observation: $p \times q$ random matrix $\tilde{\mathbf{Y}}^{\star} = [\tilde{\mathbf{Y}}(\tilde{t}_1), \dots, \tilde{\mathbf{Y}}(\tilde{t}_q)]$
- Posterior probability:

$$\mathbb{P}(\tilde{Z}=c|\tilde{\mathbf{Y}}^{\star}) \propto \pi_c p(\tilde{\mathbf{Y}}^{\star}|\tilde{Z}=c)$$

MAP with MLE parameters

$$\begin{split} \tilde{c} &= \arg\min_{c} \left\{ p \log |\tilde{\boldsymbol{\Sigma}}(\hat{\boldsymbol{\theta}}_{c})| + q \log |\widehat{\mathbf{A}_{c}\mathbf{A}_{c}^{\top}}| - 2 \log(n_{c}/n) \right. \\ &+ \operatorname{tr} \Big[\{\widehat{\mathbf{A}_{c}\mathbf{A}_{c}^{\top}}\}^{-1} \big(\tilde{\mathbf{Y}}^{\star} - \hat{\boldsymbol{\alpha}}_{c}\tilde{\mathbf{B}}\big) \{\tilde{\boldsymbol{\Sigma}}(\hat{\boldsymbol{\theta}}_{c})\}^{-1} \big(\tilde{\mathbf{Y}}^{\star} - \hat{\boldsymbol{\alpha}}_{c}\tilde{\mathbf{B}}\big)^{\top} \Big] \right\} \end{split}$$

Imputation of missing values

Given a sample $\mathbf{Y}^{i,\star}$ observed at $\{t_1,\ldots,t_{q_i}\}=T_i$ times we want to **impute value** at a unobserved time t^*

• Conditionally to Z = c and $\mathbf{Y}^{i,\star}$

$$\mathbf{Y}(t^*) \sim \mathcal{N}_p\Big(\boldsymbol{\mu}_c(t^*, \mathbf{Y}^{i, \star}), \boldsymbol{\Lambda}_c(t^*, T^i)\Big)$$

with

$$\mathbf{P} \quad \boldsymbol{\mu}_{c}(t^{*}, \mathbf{Y}^{i, \star}) = \hat{\boldsymbol{\alpha}}_{c} \mathbf{b}^{*} + \left(\mathbf{Y}^{i, \star} - \hat{\boldsymbol{\alpha}}_{c} \mathbf{B}^{i}\right) \left\{\boldsymbol{\Sigma}^{i}(\hat{\boldsymbol{\theta}}_{c})\right\}^{-1} \mathbf{k}(t^{*}, T_{i} | \hat{\boldsymbol{\theta}}_{c})$$

$$\mathbf{\Lambda}_{c}(t^{*}, T^{i}) = \left[K(t^{*}, t^{*} | \hat{\boldsymbol{\theta}}_{c}) - \mathbf{k}(t^{*}, T_{i} | \hat{\boldsymbol{\theta}}_{c})^{\top} \left\{\boldsymbol{\Sigma}^{i}(\hat{\boldsymbol{\theta}}_{c})\right\}^{-1} \mathbf{k}(t^{*}, T_{i} | \hat{\boldsymbol{\theta}}_{c})\right] \otimes \widehat{\boldsymbol{\Lambda}_{c} \boldsymbol{\Lambda}_{c}^{\top}}$$

Imputation using MAP:

$$\tilde{\mathbf{Y}}^{i}(t^{*}) = \boldsymbol{\mu}_{c}(t^{*}, \mathbf{Y}^{i, \star})$$

When class is unknown

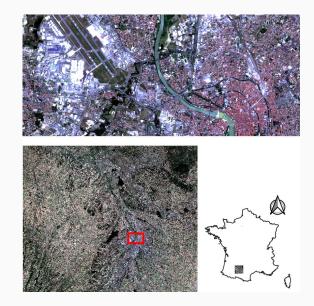
$$\mathbf{Y}(t^*) \sim \sum_{c=1}^{C} \mathbb{P}(Z = c | \mathbf{Y}^{i,*}) \mathcal{N}_p \Big(\boldsymbol{\mu}_c(t^*, \mathbf{Y}^{i,*}), \boldsymbol{\Lambda}_c(t^*, T^i) \Big)$$

SRIN

Experimental results

Sentinel-2 SITS

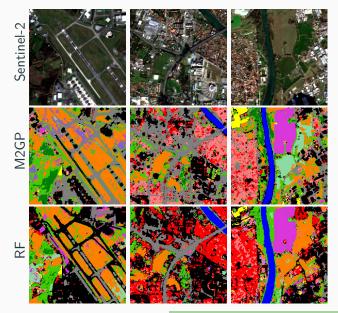
Class	n_c
Summer crops	40,000
Winter crops	30,000
Broad-leaved forest	10,000
Continuous urban fabric	10,000
Discontinuous urban fabric	10,000
Industrial or commercial units	10,000
Meadow	10,000
Orchards	10,000
Road surfaces	10,000
Vines	10,000
Water bodies	10,000
Woody moorlands	9,972
Coniferous forest	9,957
Natural grasslands	9,939
Total	189,868



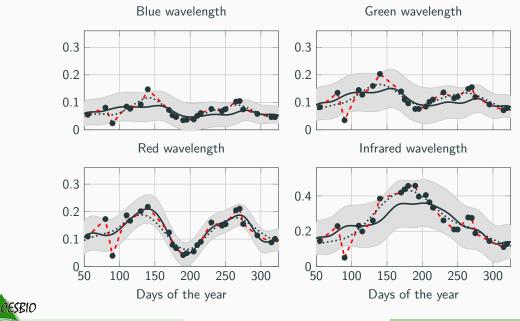
CESBID

Classification results

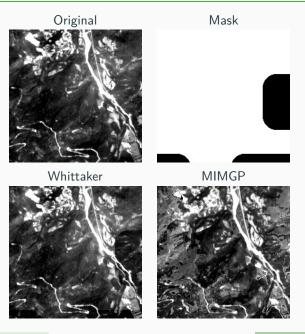
	Average F1	std F1
MIMGP	57.4	1.04
M2GP	70.1	0.43
QDA	70.5	0.75
lin-SVM	75.2	1.11
RF	78.2	1.17



Reconstruction of missing values 1/2



Reconstruction of missing values 2/2



Conclusions et prospects

- Mixture Multivariate of Gaussian process \checkmark
- Bayesian classification and imputation \checkmark
- \checkmark Scale well w.r.t. the number samples
- ✓ Imputation
- X Classification accuracy¹

¹Additional results in A. Constantin, M. Fauvel and S. Girard, "Joint Supervised Classification and Reconstruction of Irregularly Sampled Satellite Image Times Series," in IEEE Transactions on **CESE** Oscience and Remote Sensing, [CFG21a] M. Fauvel - @MaFauvel

- Non-Gaussian Processes
- Unlock spatial stationarity
- Remove the constant sampling assumption for the spectral domain

Bibliography i

References

- Constantin, Alexandre, Mathieu Fauvel, and Stéphane Girard. "Joint Supervised Classification and Reconstruction of Irregularly Sampled Satellite Image Times Series". In: *IEEE Transactions on Geoscience and Remote Sensing* (2021), pp. 1–13. DOI: 10.1109/TGRS.2021.3076667.
- ."Mixture of multivariate gaussian processes for classification of irregularly sampled satellite image time-series". working paper or preprint. 2021. URL:

https://hal.archives-ouvertes.fr/hal-03280484.

- Dawid, Alexander Philip. "Some matrix-variate distribution theory: Notational considerations and a Bayesian application". In: *Biometrika* 68.1 (Apr. 1981), pp. 265–274. ISSN: 0006-3444. DOI: 10.1093/biomet/68.1.265.
- **Goovaerts, Pierre**. *Geostatistics for Natural Resources Evaluation*. Publisher: Cambridge University Press. Oxford University Press, USA, 1997. ISBN: 0-19-511538-4.
- Rasmussen, Carl Edward and Christopher K. I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2005. ISBN: 026218253X.

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

https://gitlab.cesbio.omp.eu/fauvelm/resste_spatio_stat_2022

Questions / Comments ?

