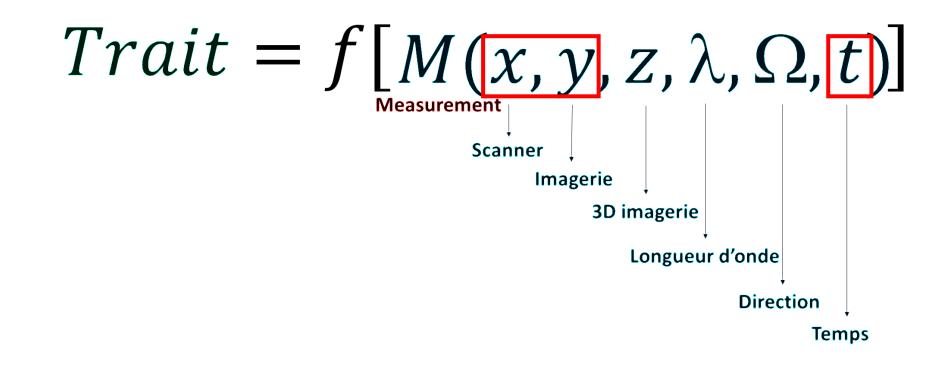
Exploitation des dimensions spatiotemporelles en télédétection-phenotypage

Fred BARET

INRAE-EMMAH-CAPTE, Avignon, France,

Les 6 dimensions disponibles pour caractériser les traits



Echantillonnage du champ de rayonnement réfléchi / émis par les couverts végétaux

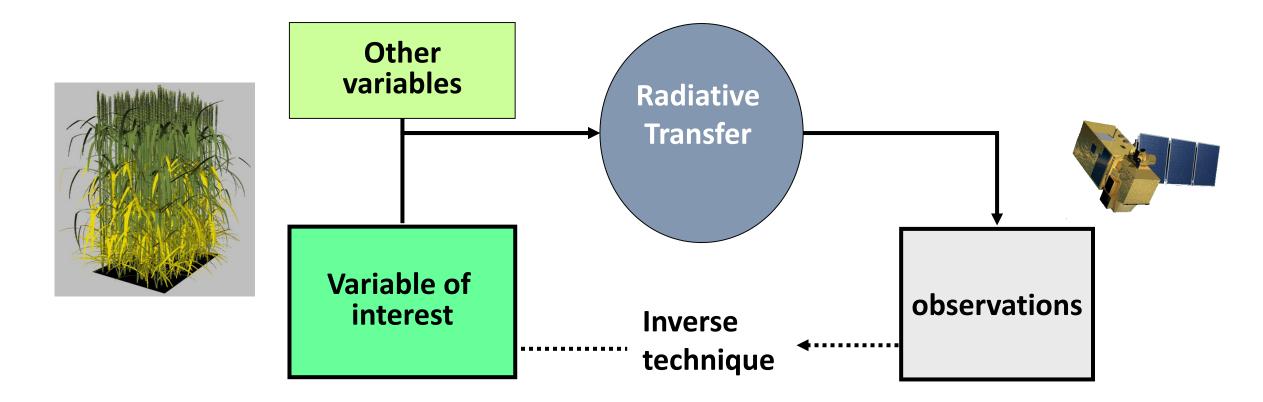
Les différents systèmes d'observation

	Fixe	Porté	Tracteur	Phenomobile	Portique	Drone	Satellite
Résolution spatiale	1mm	0.2mm	0.5mm	0.5mm	0.5mm	0.5mm – 5cm	0.5m-10m
Couverture spatiale	<100m ²	<1 ha	<5 ha	<5ha	<0.3ha	<15ha	>500km²
Temps de revisite	1h-1j	3j-30j	3j-30j	3j-30j	3h-30j	3h-30j	1j-10j
Directionnalité	0° 45°	0° & 45°	0°	0° & 45°	0° & 45°	0° (45°)	$\approx 0^{\circ}$
Richesse Spectrale	RGB	RGB	RGB+Multi	RGB+Multi	RGB+Multi	RGB+Multi+IRT	Multi
3D	Non	Photo	Photo, LiDAR	Photo, LiDAR	Photo, LiDAR	Photo (LiDAR)	Non

Tous les systèmes échantillonnent l'espace et le temps à des résolutions variables. Typiquement :

- Temps: 1h -> 1 mois
- Espace: 1/10 mm -> km

Trait estimation is an inverse problem



The inverse problem in remote sensing / phenotyping is generally ill-posed: several solutions may provide about the same radiometric response

Using constraints to regularize the inverse problem

Prior information on the distribution of the input variables

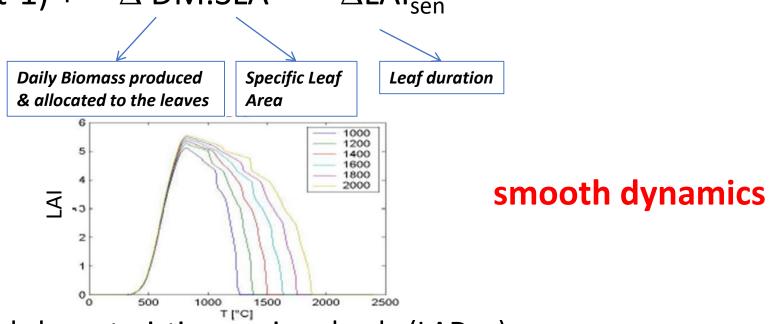
- \circ Introduced using:
 - \checkmark Cost function with Bayesian term
 - LUT, iterative optimization
 - ✓ Machine learning trained over datasets generated using on the prior knowledge of the distributions
 - NNT, SVM, VIs ...
- \circ $\;$ With limitations due to:
 - ✓ Knowledge of prior distribution
 - \checkmark Uncertainties in the model / measurements

] Temporal and spatial constraints

• Based on the assumption of a continuum of canopy characteristics in the spatiotemporal domain.

The spatio-temporal continuum: the temporal dimension (1/2)

□ Vegetation structure (LAI) results from incremental processes LAI(t) = LAI(t-1) + Δ DM.SLA - Δ LAI_{sen}

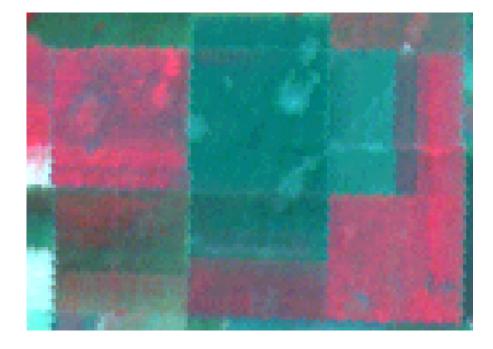


• Other structural characteristics varying slowly (LAD ...)

Leaf properties varying also through incremental processes: smooth dynamics

The spatio-temporal continuum: the spatial dimension (2/2)

- Within a vegetation patch (few pixels in the same object), pixels in a neighborhood are generally showing a local gradient due to:
 - the PSF of the instrument/reprojection
 - Factors of local variability mainly linked to soil properties and crop implantation



Working on local (3x3, 5x5 ...) allows reducing problems due to multi-temporal registration accuracy

(Brief and non-exhaustive) Review of Approaches

Temporal constraints

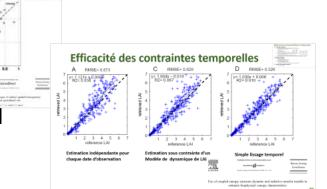
- Posterior processing: Filtering instantaneous estimates
 - ✓ Statistical operator (median / average ...)
 - ✓ Savitsky-Golay
 - ✓ Logistic/ gaussian model
 - ✓ Semi-empirical model (Duveiller et al. 2011)
- Within the inversion process: embedded dynamic model
 - ✓ local smoothness (Lewis et al. 2012)
 - ✓ Semi-empirical dynamic model: Kötz et al. 2005, Lauvernet et al. 2008
- Steady values of surface characteristics for aerosol retrieval (Hagole et al. 2008)

Spatial constraints

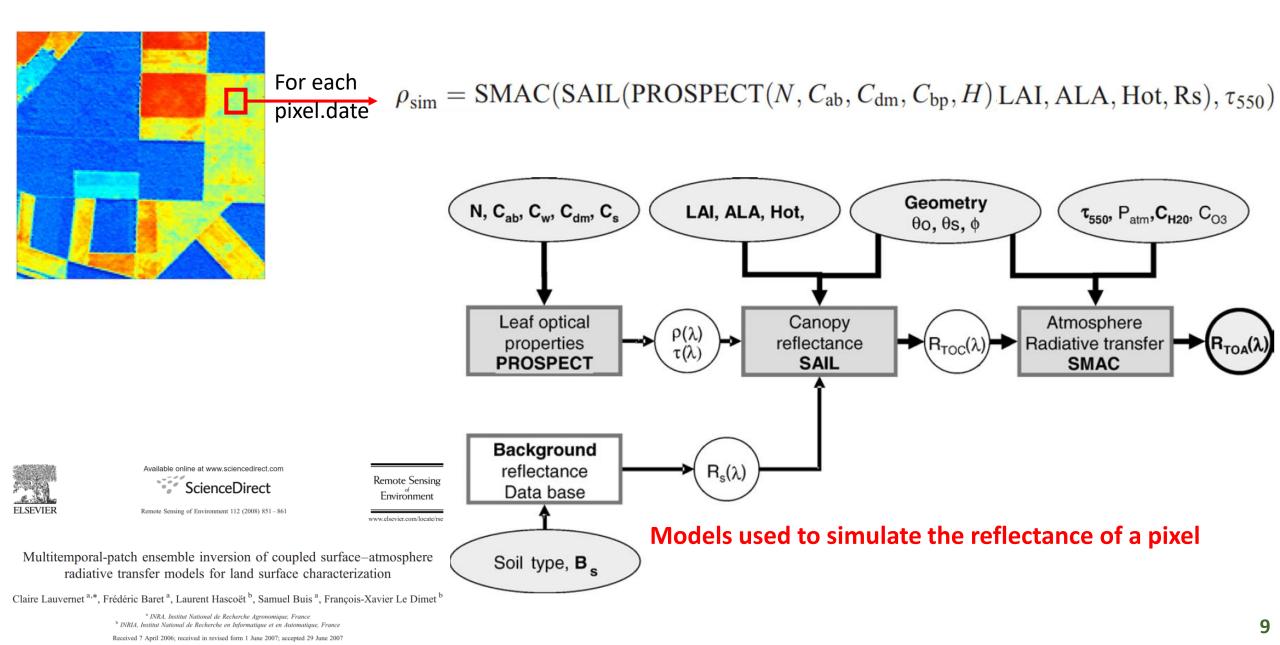
- Posterior processing
 - ✓ Spatial filtering (generally, averaging)
- \circ $\;$ Within the inversion process
 - ✓ Atzberger 2004 (higher order statistics)
 - ✓ Atzberger & Richter 2012 (common variables within a 3x3 cell and field)

Spatial and temporal constraints

✓ Lauvernet et al. 2008



The proposed approach: Multitemporal-patch model inversion



The proposed approach: type of constraints for the input variables

Spatial constraints

- Local scale (≈3x3 cell depends on the heterogeneity: variogram)
 - ✓ No constraint (9 values)
 - \checkmark local spatial gradient (3 values)

 $V(x+i, y+j) = V(x, y) + i\Delta x + j\Delta y$

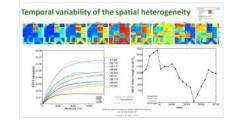
- ✓ Equality (1 value)
- Field / Plot scale
 - ✓ No constraint
 - ✓ Equality

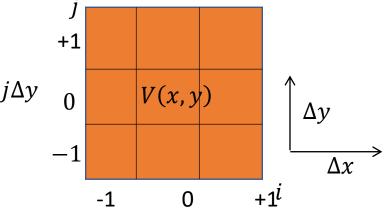
Temporal constraints

- Local scale (small temporal window ≈5-10 days)
 - ✓ No constraints
 - ✓ Smoothness (limited local variability)

\circ Growth cycle scale (or part of it for real time estimation)

- \checkmark No constraints
- ✓ Equality





The proposed approach: possible constraints

Variables		Spatial C	onstraint	Temporal Constraint		
Vdfla	ables	3x3 cell	Field	local	cycle	
	Ref. Spectra	gradient	-	-	Equality	
Background	Brightness	equality	_	-	-	
	LAI	gradient	_	-	Dyn. Model	
	Cab	gradient	-	Smoothness	-	
Canopy	Other	-	equality	-	Equality	
Atmosphere All		equality	equality	-	-	

The proposed approach: the constraints actually used

Considering

- a small portion of land (<km²)
- observed at 3 dates close together

Assumptions

- Background: no constraints
- Canopy:
- Atmosphere:

no change with time no change with space

	Variables	Constraints		Distribution characteristics				
		Space	Time	Mode	Standard deviation	LB	UB	
Background	Bs			0.8	0.3	0.3	1.3	
Leaves	N		Х	1.5	1	1	4.5	
	$C_{\rm ab}$		Х	50	30	15	100	
	$(\mu g.cm^{-2})$							
	$C_{\rm dm}$		x	0.0075	0.0075	0.002	0.02	
	$(g.cm^{-2})$							
	H		х	0.8	0.05	0.65	0.90	
	$C_{\rm bp}$		x	0.01	0.6	0	1.5	
Canopy	LAI		х	1.5	1.5	0	8.5	
	ALA (°)		Х	60	20	30	85	
	Hot		Х	0.1	0.3	0.001	1	
Atmosphere	$ au_{550}$	х		0.20; 0.	.35; 0.50			
	$C_{\rm H2O}$	х		5.9; 2.0; 2.9				
	(cm)							
	$C_{\rm O3}$ (db)	х		0.35; 0.50; 0.20				
	$P_{\rm atm}$	х		996 ; 936; 1057				
	(mbar)							
Geometry	φ (°)	х		58; 42;	41			
	θs (°)	х		46; 47;	45			
	θv (°)	х		15; 33;	2			

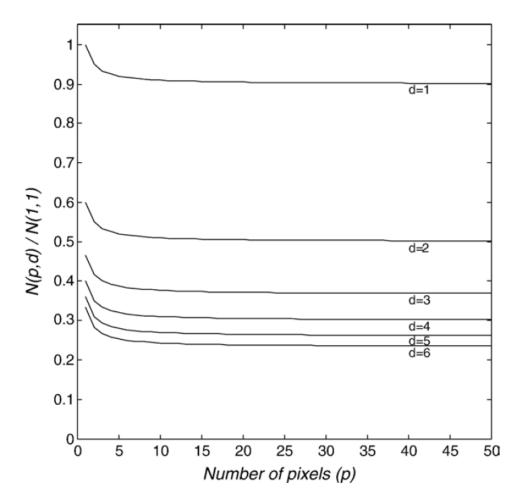
The proposed approach: limitation of the number of unknowns

N(p,d) : number of pixels and dates considered

- p number of pixels
- d number of dates

N(p,d)=d.Na + p.Nc+ d.p.Nb

- Nb=1 Number of variables for the bakground
- Nc=8 Number of variables for the canopy
- Na=1 Number of variables for the atmosphere



The fraction of unknowns (N(p,d)/N(1,1)) does not vary much after 5 pixels extent and 3 observation dates Application for p=25 and n=3

The proposed approach: implementation

 $\rho_{sim} = SMAC(SAIL(PROSPECT(N, C_{ab}, C_{dm}, C_{bp}, H) LAI, ALA, Hot, Rs), \tau_{550}) = M(A, C, Bs)$

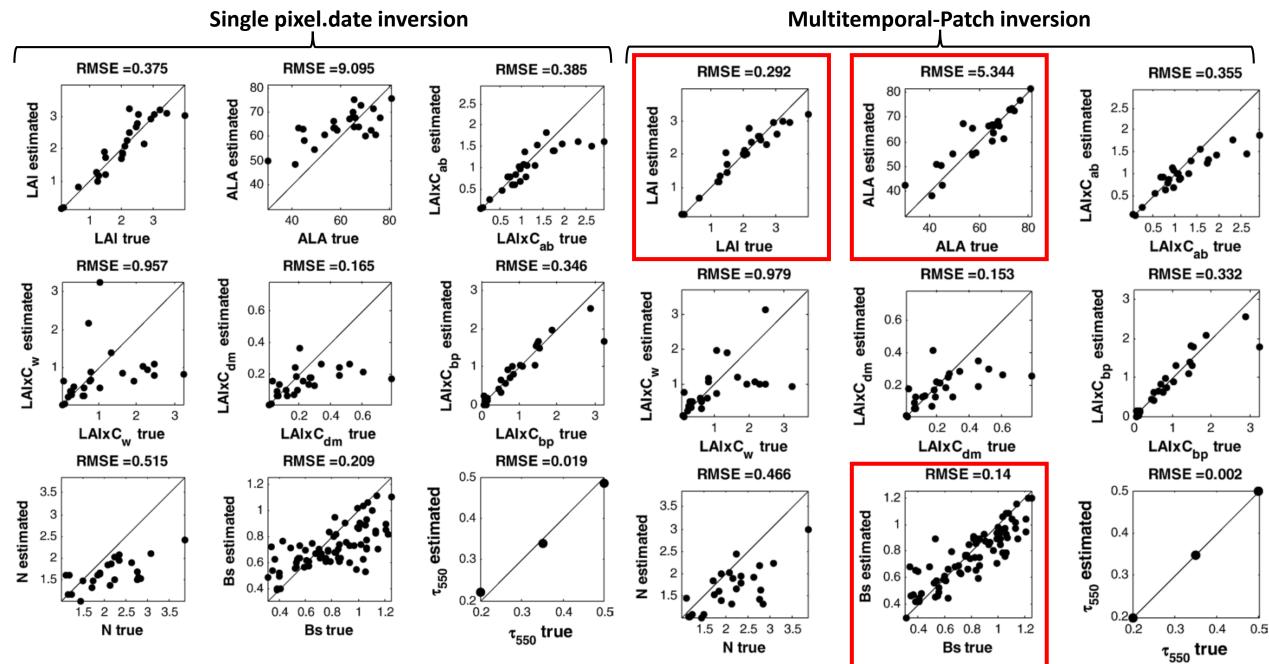
Inversion (parameter estimation) using a variational approach: L-BFGS-B: quasi-newton algorithm to minimize the following cost functions:

- Single pixel and date solution: $J_{i,j}(A, C, Bs) = \sum_{\lambda} \frac{(\rho_{\text{mes},i,j} - \rho_{\text{sim}})^2}{\sigma_{\text{mes},i,j}^2} + \frac{(A - A_0)^2}{\sigma_A^2} + \frac{(C - C_0)^2}{\sigma_C^2} + \frac{(Bs - Bs_0)^2}{\sigma_Bs^2}$
- Multitemporal-Patch inversion:

$$J(A, C, Bs) = \sum_{\text{dates pixels}} \sum_{\lambda} \frac{\left(\rho_{\text{mes}} - \rho_{\text{sim}}\right)^2}{\sigma_{\text{mes}}^2} + \sum_{\text{dates}} \frac{\left(A - A_0\right)^2}{\sigma_A^2} + \sum_{\text{pixels}} \frac{\left(C - C_0\right)^2}{\sigma_C^2} + \sum_{\text{dates}} \sum_{\text{pixels}} \frac{\left(Bs - Bs_0\right)^2}{\sigma_{Bs}^2}$$

An adjoint model is used to compute analytically the gradient of the cost function.

The proposed approach: results



Conclusion on the proposed approach

- Efficient for few variables that are known to be sensitive to compensation effects (LAI, ALA, Bs)
- Some variables appear to be almost insensitive: the atmosphere The atmospheric signal is very different from that of the canopy
- The proposed approach was based on model simulations. Need to be tested over actual observations
- Probably major improvement of the approach when using a model describing the dynamics of the main canopy structure variables: LAI

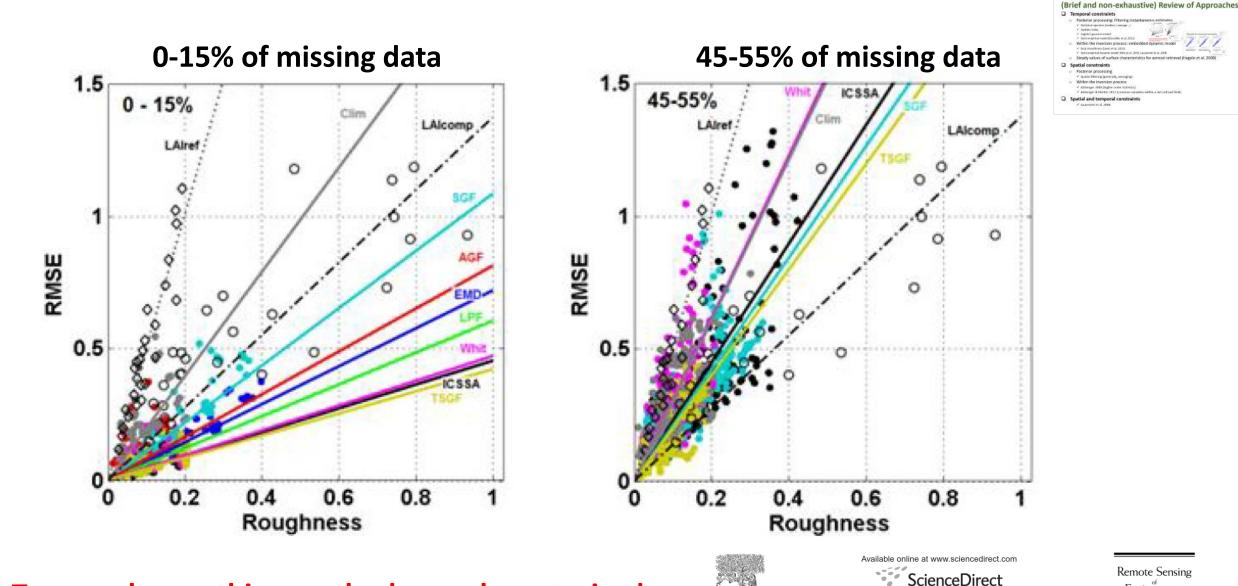
CONCLUSION / PERSPECTIVES

- **D** Temporal constraints easy to impose and very efficient
- **G** Spatial constraints more difficult because of the complexity and diversity of the spatial organization
 - o Soil

- Environment
- Cultural practices
- **Investigation of approaches based on process models: statistical models?**

For phenotyping applications

- Tracking objects in high resolution (mm) images
- Network of sites: assimilation in crop growth models: space= soil x environment x cultural practices



ELSEVIEF

Temporal smoothing methods are characterized by a particular balance between RMSE (fidelity) and roughness (smoothness)

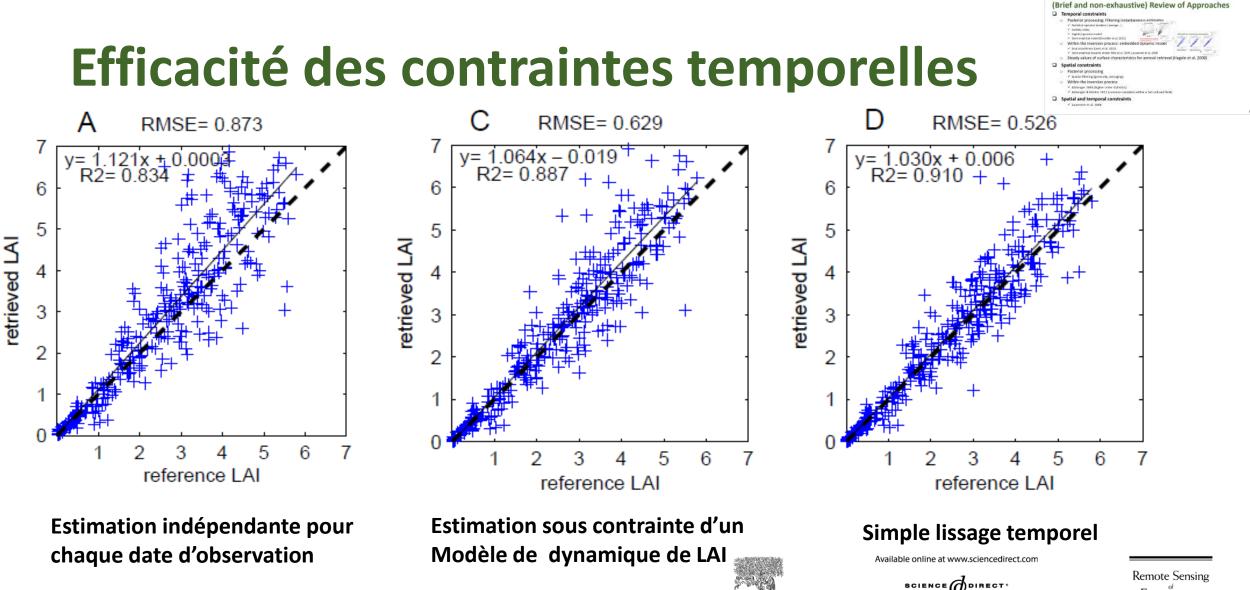
Modeling temporal changes in surface spatial heterogeneity over an agricultural site

Remote Sensing of Environment 112 (2008) 588-602

S. Garrigues^{a,*}, D. Allard^b, F. Baret^c

Environment

www.elsevier.com/locate/rs/



SCIENCE dDIRECT. Remote Sensing of Environment 95 (2005) 115-124

www.elsevier.com/locate/rs

Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics

Benjamin Koetz^{a,*}, Frédéric Baret^b, Hervé Poilvé^c, Joachim Hill^d

Environment

The proposed approach: type of c Spetial constraint **Temporal variability of the spatial heterogeneity** Field / Plot sz Temporal constraints o Local scale (small tempora rowth cycle scale (or part 04/04 05/03 12/24 05/31 06/13 06/29 07/22 03/13 03/17 0.6 1400 0.08 1300 NDVI mean length scale D_c 0.07 12/24 1200 03/13 0.06 NDVI variogram 03/17 1100 04/04 1000 05/03 05/31 900 06/13 06/29 800 07/22 0.02 700 Available online at www.sciencedirect.com 0.01 Remote Sensing ScienceDirect Environment ELSEVIER Remote Sensing of Environment 112 (2008) 588-602 00 04/04 05/24 06/24 07/22 www.elsevier.com/locate/rse 400 800 1200 date distance (m) Modeling temporal changes in surface spatial heterogeneity

over an agricultural site S. Garrigues^{a,*}, D. Allard^b, F. Baret^c