Downscaling coarse observations to predict continuous species spatio-temporal distribution Going from coarse landings data to fine scale fish distribution

Baptiste Alglave, Marie-Pierre Etienne, Kasper Kristensen, Youen Vermard, Mathieu Woillez, Etienne Rivot

04/2022 - RESSTE

Result: 00

Spatial data in ecology

Survey data

Standardized sampling plan High quality data

Small sample size

Citizen science data

Access to more data Exact locations available

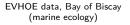
Opportunistic (or even preferential) sampling

Declaration data

Mandatory declaration Massive data

Aggregated at the scale of administrative units

Examples



Ebird application (ornithology)

eBird

Harvest data, Wisconsin (hunting)

How to integrate all these datasources?

(especially when they do not have the same spatial resolution)

Change of support

Common issue in statistical literature

"Modifiable areal unit" problem (MAUP): aggregation of data over increasingly larger geographic scales (e.g. data collected at point level but regrouped/declared at coarse level)

Several fields of application: climatology, health science, ecology

But mainly standard observational data (Poisson, Gaussian), while data may be more complex in ecological applications (e.g. zero-inflated lognormal data)

Objective of our work: provide an approach that suits for complex data

Base our model on an existing framework in the context of fishery science:

Auguate Daptiste, Rivot Etienne, Etienne mane-rierre, Woinez Matnieu, Thorson James T, Vermard Touen (2022). Compining scientific survey and commercial catch data to map fish distribution. ICES Journal of Marine Science IN PRESS. https://doi.org/10.1093/icesjms/fsac032

How to integrate all these datasources?

(especially when they do not have the same spatial resolution)

Change of support

Common issue in statistical literature

"Modifiable areal unit" problem (MAUP): aggregation of data over increasingly larger geographic scales (e.g. data collected at point level but regrouped/declared at coarse level)

Several fields of application: climatology, health science, ecology

But mainly standard observational data (Poisson, Gaussian), while data may be more complex in ecological applications (e.g. zero-inflated lognormal data)

- Objective of our work: provide an approach that suits for complex data

Base our model on an existing framework in the context of fishery

science:

Alglave Baptiste, Rivot Etienne, Etienne Marie-Pierre, Woillez Mathieu, Thorson James T, Vermard Youen (2022). Combining scientific survey and commercial catch data to map fish distribution. ICES Journal of Marine Science IN PRESS. https://doi.org/10.1003/icesjms/fsac032

How to integrate all these datasources?

(especially when they do not have the same spatial resolution)

Change of support

Common issue in statistical literature

"Modifiable areal unit" problem (MAUP): aggregation of data over increasingly larger geographic scales (e.g. data collected at point level but regrouped/declared at coarse level)

Several fields of application: climatology, health science, ecology

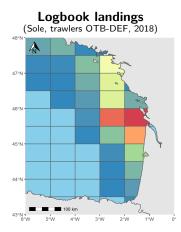
But mainly standard observational data (Poisson, Gaussian), while data may be more complex in ecological applications (e.g. zero-inflated lognormal data)

- Objective of our work: provide an approach that suits for complex data

Base our model on an existing framework in the context of fishery science: Alelave Bastiste, Rivot Etienne, Etienne Marie-Pierre, Woillez Mathieu, Thorson James T. Vermard Youen (2022). Combining scientific

survey and commercial catch data to map fish distribution. ICES Journal of Marine Science IN PRESS. https://doi.org/10.1093/icesims/fsac032

Commercial catch declarations data in fishery science

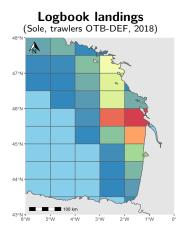


Spatial Catch are daily declared at the resolution of ICES rectangles

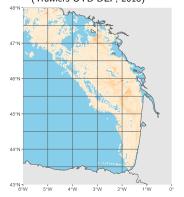
Fishing locations (VMS) (Trawlers OTB-DEF, 2018)

VMS pings are vessels GPS locations emitted each hour

Commercial catch declarations data in fishery science

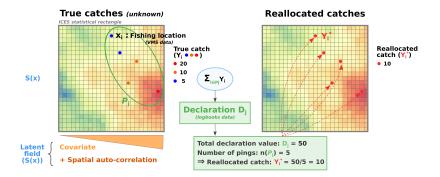


Fishing locations (VMS) (Trawlers OTB-DEF, 2018)



 Spatial
 Catch are daily declared at the resolution of ICES rectangles
 VMS pings are vessels GPS locations emitted each hour

Refine landings spatial resolution



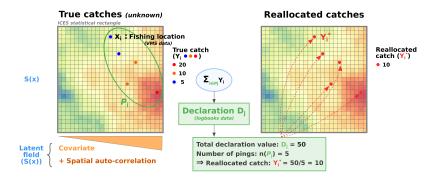
Current situation
$$Y_i | S(x_i), x_i \sim \mathcal{L}_Y(S(x_i), \xi, \sigma^2)$$
 $Y_i = \frac{D_j}{n(\mathcal{P}_j)} = Y_i^*$

Alternative solution

$$D_j = \sum_{i \in \mathcal{P}_j} Y_i$$

 $D_j|S_{\mathcal{P}_j},\mathcal{P}_j\sim\mathcal{L}_D(S)$

Match \mathcal{L}_D and \mathcal{L}_Y moments



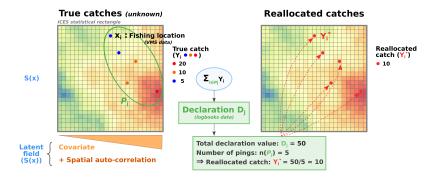
Current situation
$$Y_i | S(x_i), x_i \sim \mathcal{L}_Y(S(x_i), \xi, \sigma^2)$$
 $Y_i = \frac{D_j}{n(\mathcal{P}_j)} = Y_i^*$

Alternative solution

$$D_j = \sum_{i \in \mathcal{P}_j} Y_i$$

 $D_j | S_{\mathcal{P}_j}, \mathcal{P}_j \sim \mathcal{L}_D(S_{\mathcal{P}_j}, \xi, \sigma)$

Match \mathcal{L}_D and \mathcal{L}_Y moments



Current situation
$$Y_i | S(x_i), x_i \sim \mathcal{L}_Y(S(x_i), \xi, \sigma^2)$$
 $Y_i = \frac{D_j}{n(\mathcal{P}_j)} = Y_i$

Alternative solution $D_j = \sum_{i \in \mathcal{P}_j} Y_i$ $D_j | S_{\mathcal{P}_j}, \mathcal{P}_j \sim \mathcal{L}_D(S_{\mathcal{P}_j}, \xi, \sigma^2)$ $\xrightarrow{\Rightarrow}$ Match \mathcal{L}_D and \mathcal{L}_Y moments

Context	Material and method	Results	Discussion
	00000		

Punctual observation model (Y_i)

 $\mathsf{L}(y,\mu,\sigma^2)$ is the lognormal likelihood for observation y, mean μ and variance σ^2 Y and D are supposed conditional on S and x

$$P(Y_i = y_i) = \begin{cases} p_i & \text{if } y_i = 0\\ (1 - p_i) \cdot L\left(y_i, \mu_i = \frac{S(x_i)}{(1 - p_i)}, \sigma^2\right) & \text{if } y_i > 0\\ p_i = \exp(-e^{\xi} \cdot S(x_i)) \end{cases}$$

Declaration model $(D_j = \sum_{i \in \mathcal{P}_j} Y_i)$

$$P(D_j = 0) = \prod_{i \in \mathcal{P}_j} P(Y_i = 0) = \exp\left\{-\sum_{i \in \mathcal{P}_j} e^{\xi} . S(x_i)\right\} = \pi_j$$

 $\mathsf{P}\left(D_{j}=d_{j}|d_{j}>0\right)=$

Context	Material and method	Results	Discussion
	00000		

Punctual observation model (Y_i)

 $\mathsf{L}(y,\mu,\sigma^2)$ is the lognormal likelihood for observation y, mean μ and variance σ^2 Y and D are supposed conditional on S and x

$$P(Y_i = y_i) = \begin{cases} p_i & \text{if } y_i = 0\\ (1 - p_i) \cdot L\left(y_i, \mu_i = \frac{S(x_i)}{(1 - p_i)}, \sigma^2\right) & \text{if } y_i > 0\\ p_i = \exp(-e^{\xi} \cdot S(x_i)) \end{cases}$$

Declaration model $(D_j = \sum_{i \in \mathcal{P}_j} Y_i)$

$$P(D_j = 0) = \prod_{i \in \mathcal{P}_j} P(Y_i = 0) = \exp\left\{-\sum_{i \in \mathcal{P}_j} e^{\xi} . S(x_i)\right\} = \pi_j$$

 $\mathsf{P}(D_j = d_j | d_j > 0) = ?$

Context	Material and method	Results	Discussion
OO	000●0	00	OO
Specifying P (D)	$d_i = d_i d_i > 0)$		

Compute the moments of $D_j \vert d_j > 0$

$$E(D_j | d_j > 0) = \frac{\sum_{i \in \mathcal{P}_j} S(x_i)}{1 - \pi_j}$$
$$Var(D_j | d_j > 0) = \frac{\sum_{i \in \mathcal{P}_j} Var(Y_i)}{1 - \pi_j} - \frac{\pi_j}{(1 - \pi_j)^2} E(D_j)^2$$
$$Var(Y_i) = \frac{S(x_i)^2}{1 - p_i} (e^{\sigma^2} - (1 - p_i))$$

Consider $D_i | d_i > 0$ is Lognormal too

$$\mathsf{P}\left(D_{j}=d_{j}|d_{j}>0\right)=$$

$$L\left(d_{j}, \mu_{j} = E(D_{j}|d_{j} > 0), \sigma_{j}^{2} = ln(\frac{Var(D_{j}|d_{j} > 0)}{E(D_{j}|d_{j} > 0)^{2}} + 1)\right)$$

Context	Material and method	Results	Discussion
OO	000●0	OO	OO
Specifying P	$P(D_i = d_i d_i > 0)$		

Compute the moments of $D_j \vert d_j > 0$

J

$$E(D_j|d_j > 0) = \frac{\sum_{i \in \mathcal{P}_j} S(x_i)}{1 - \pi_j}$$
$$Var(D_j|d_j > 0) = \frac{\sum_{i \in \mathcal{P}_j} Var(Y_i)}{1 - \pi_j} - \frac{\pi_j}{(1 - \pi_j)^2} E(D_j)^2$$
$$Var(Y_i) = \frac{S(x_i)^2}{1 - p_i} (e^{\sigma^2} - (1 - p_i))$$

Consider $D_{j} \vert d_{j} > 0$ is Lognormal too

$$\mathsf{P}(D_j = d_j | d_j > 0) =$$

 $\mathsf{L}\left(d_j, \mu_j = \mathsf{E}(D_j | d_j > 0), \sigma_j^2 = ln(rac{Var(D_j | d_j > 0)}{\mathsf{E}(D_j | d_j > 0)^2} + 1)
ight)$

Simulation-estimation

Simulation

- Latent field (covariate + spatial random effect)
- Commercial data (3000 samples over 2/3 of the area)
- Reallocation process (10 locations per declaration)
- Scientific data (100 samples over the whole the area)

Model evaluation

1/ Mean square prediction error

$$MSPE = \frac{\sum_{x=1}^{n} (S(x) - \hat{S}(x))^{2}}{n}$$

2/ Covariate effect (or species-habitat relationship):

 $\beta_S = 2$ versus $\hat{\beta}_S$

Estimation Comparison of 3 model configurations:

1/ Model fitted to scientific data only

2/ Integrated model (= scientific + commercial data) with commercial likelihood built on Y_i^*

3/ Integrated model with commercial likelihood built on D_j

Estimation realized through TMB (Template Model Builder) 100 runs of simulation-estimation

Case study: Sole in the Bay of Biscay

Simulation-estimation

Simulation

- Latent field (covariate + spatial random effect)
- Commercial data (3000 samples over 2/3 of the area)
- Reallocation process (10 locations per declaration)
- Scientific data (100 samples over the whole the area)

Model evaluation

$$MSPE = \frac{\sum_{x=1}^{n} (S(x) - \hat{S}(x))^2}{n}$$

2/ Covariate effect (or species-habitat relationship):

 $\beta_S = 2$ versus $\hat{\beta}_S$

Estimation

Comparison of 3 model configurations:

- 1/ Model fitted to scientific data only
- 2/ Integrated model (= scientific + commercial data) with commercial likelihood built on Y_i^*

3/ Integrated model with commercial likelihood built on $D_{\rm j}$

Case study: Sole in the Bay of Biscay

Simulation-estimation

S

Simulation

- Latent field (covariate + spatial random effect)
- Commercial data (3000 samples over 2/3 of the area)
- Reallocation process (10 locations per declaration)
- Scientific data (100 samples over the whole the area)

Model evaluation

1/ Mean square prediction error

$$MSPE = \frac{\sum_{x=1}^{n} (S(x) - \hat{S}(x))^2}{n}$$

2/ Covariate effect (or species-habitat relationship):

 $\beta_S = 2$ versus $\hat{\beta}_S$

Estimation

Comparison of 3 model configurations:

- 1/ Model fitted to scientific data only
- 2/ Integrated model (= scientific + commercial data) with commercial likelihood built on Y_i^*

3/ Integrated model with commercial likelihood built on $D_{\rm j}$

Estimation realized through TMB (Template Model Builder) 100 runs of simulation-estimation

Simulation-estimation

Simulation

- Latent field (covariate + spatial random effect)
- Commercial data (3000 samples over 2/3 of the area)
- Reallocation process (10 locations per declaration)
- Scientific data (100 samples over the whole the area)

Model evaluation

1/ Mean square prediction error

$$MSPE = \frac{\sum_{x=1}^{n} (S(x) - \hat{S}(x))^2}{n}$$

2/ Covariate effect (or species-habitat relationship):

$$\beta_{S} = 2$$
 versus $\hat{\beta}_{S}$

Estimation

Comparison of 3 model configurations:

- 1/ Model fitted to scientific data only
- 2/ Integrated model (= scientific + commercial data) with commercial likelihood built on Y_i^*

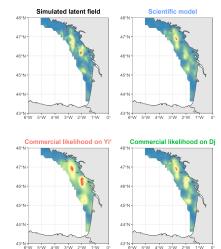
3/ Integrated model with commercial likelihood built on D_j

Case study: Sole in the Bay of Biscay

Context	Material and method	Results	Discussion
OO	00000	●O	OO

Simulation-estimation



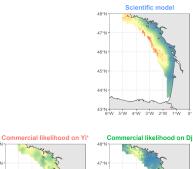


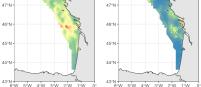
Case study: Sole in the Bay of Biscay

Parameters estimates μ βs-M. var. Range ξ_{sci} σ_{sci} ξcom σ_{com} k_{com} -2 -1 ŝ. Scientific model 🔶 Yi* 🔶 Dj

The integrated model fitted to D_j: → Recovers the species-habitat relationship (β_S)

 Modifies the contrasts of the map (shape and intensity of the hotspots/coldspots)





48°N

48°N

47°N

46°N -

45°N -

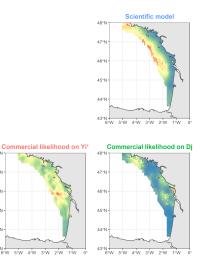
44°N

43°N

Case study: Sole in the Bay of Biscay

Parameters estimates u βs M. var. Range ξ_{sci} σ_{sci} ξcom σ_{com} k_{com} -2 -1 ŝ. Scientific model 🔶 Yi* 🔶 Dj

The integrated model fitted to D_j: Recovers the species-habitat relationship (β_{S}) Modifies the contrasts of the map (shape and intensity of the hotspots/coldspots)



Context OO	Material and method	Results OO	Discussion

- Integrated framework that combines catch declarations data (rough resolution) and scientific data (exact locations)
 - Allows to estimate the habitat effect through commercial data
 - Modifies the contrasts of the map (hotspots vs. coldspots)

• Some limits:

How to ease convergence ?

 \blacksquare Need to make the hypothesis that fishing locations (\mathcal{P}_j) are known

• Is it a generic framework ?

- The overall approach is,
- i.e. modelling observed aggregated observations as a sum of latent punctual observations)

But need to adapt the observation model to the data

(here zeroinflated positive continuous data)

• Moving to space-time ?

Extending the observation model to account for temporal misalignment

Context 00		Material and method 00000	Results OO	Discussion ●○
D ·	-			

- Integrated framework that combines catch declarations data (rough resolution) and scientific data (exact locations)
 - Allows to estimate the habitat effect through commercial data
 - Modifies the contrasts of the map (hotspots vs. coldspots)

• Some limits:

How to ease convergence ?

→ Need to make the hypothesis that fishing locations (\mathcal{P}_j) are known

- Is it a generic framework ?
 - The overall approach is,

(i.e. modelling observed aggregated observations as a sum of latent punctual observations)

But need to adapt the observation model to the data

(here zeroinflated positive continuous data)

• Moving to space-time ?

Extending the observation model to account for temporal misalignment

Context 00	Material and method 00000	Results 00	Discussion
D :			

- Integrated framework that combines catch declarations data (rough resolution) and scientific data (exact locations)
 - Allows to estimate the habitat effect through commercial data
 - Modifies the contrasts of the map (hotspots vs. coldspots)

Some limits:

How to ease convergence ?

Need to make the hypothesis that fishing locations (\mathcal{P}_j) are known

• Is it a generic framework ?

The overall approach is,

(i.e. modelling observed aggregated observations as a sum of latent punctual observations)

But need to adapt the observation model to the data (here zeroinflated positive continuous data)

• Moving to space-time ?

Extending the observation model to account for temporal misalignment

Context 00	Material and method 00000	Results OO	Discussion
D:			

- Integrated framework that combines catch declarations data (rough resolution) and scientific data (exact locations)
 - Allows to estimate the habitat effect through commercial data
 - Modifies the contrasts of the map (hotspots vs. coldspots)

Some limits:

How to ease convergence ?

Need to make the hypothesis that fishing locations (\mathcal{P}_j) are known

• Is it a generic framework ?

- The overall approach is,
- (i.e. modelling observed aggregated observations as a sum of latent punctual observations)
- But need to adapt the observation model to the data

(here zeroinflated positive continuous data)

Moving to space-time ?

Extending the observation model to account for temporal misalignment

Thank you for your attention!

