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‘\' CoCO2, prototype system for a CO2MVS
S

Copernicus CoCO2 project
Build a prototype system for a

CO2 emission monitoring
service exploiting atmospheric
CO2 measurements

M Observations of What we

- co, atellite
i o atmospheric CO2 N\ 7 already know
K Integration and modelling

are c ined
with the detail required to suppor
from local to global sc

Our Task:

Build an inverse system to
improve the quantification of
CO2 sources

- of large magnitude

- at urban scale

WAHILY

1
¥
1

o iy based on the spaceborne
imagery of the CO2
— atmospheric plumes from

these sources.
CO2MVS concept
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THREE OBJECTIVES

XCO2 [ppmv]

408.13 Plume inverse modelling
A07es8 > find the source of the
407.83 plume
4"7'68/' (=corresponding
40799 anthropogenic
1738 emissions)
407.23
407.08
406.93
406.78
XCO2 [ppmv]
0.19
0.17
Plume presence Plume 011
> guess if an image Segmentation o
contains a plume -

0.01
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% Tests (training and evaluation) with a 1-year simulation of the hourly XCO2 fields in the
Paris area, tracing the plume from Paris and other bio and anthropogenic components.

% Simulations by LSCE/Suez-Origins (Lian et al., 2021)

XCO2 [ppmv] XCO2 [ppmv]
, , 1.70
409.10 152
408.10 L34
407.10
1.16
406.10
405.10 0-99
S 0.80
404.10
403.10 0-62
402.10 s
401.10 0.26
400.10 == - —— 0.08
XCO2 field Anthropogenic plume enhanced
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XCO2 [ppmv]

Signal of CO2 plumes induced by cities
emissions is intrinsically difficult to
detect

XCO2 [ppmv]

> Rarely exceeds
M:O.Zl values of a few ppm
0.19 > Perturbed by
—0.17 variable regional
—0.15 CO2 background
—0.12 signals

Many plumes concealed ~0.10

under the background

«| | Fo0.08
-0.06
Fo.os

- 0.01
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XCO2 [ppmv] XCO2 [ppmv]
408.31
408.64

408.14
408.34

407.98
408.04

407.74 407.81

407.44 407.65

407.14 40749

406.84 407.32

406.54 407.15

406.24 406.99

405.94 406.82

Image containing
e Paris anthropogenic
signal (=plume)
e background components

Image containing
e only background

: o components
(=noise) Statistical model labelled as a 0

labelled as a 1

Learn which characteristics
distinguish an image with a
Paris signal from pure noise



1.

2,

3.

Noise:

a.
b.

Variability of the background
Instrument noise

Plume “definition”:

a. Meteorological conditions,
which determine dilution and
dispersion

b. Intensity of the emission
source

Image quality:

a. Clouds

b. Number of satellite overpasses

1.

Simulate satellite
observations
(OSSE) ?

Detectability of CO2 emission plumes of cities and power
plants with the Copernicus Anthropogenic CO2 Monitoring
(CO2M) mission. Kuhlman et al.



\\@ Convolutional Neural Networks for plume presence
. ~4
\ o

XCO2 [ppmv] Convolutional Neural Networks:

408.94

wss0 = capture spatial features of the image through
408.67 application of successive filters

wsss A i.e., transform image into relevant features maps
wsa0 >  Used to recognise spatial features that belong to
108.26 an anthropogenic plume

| f408.13

407.99

407.86

407.72

32@158x158

i

g Max-Pool Batch norm.

32@79x79 32@79x79

1@160x160

>

Ffatten-Dense

Convolution
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XCO2 [ppmv]

260 Random croppings can be used to:
Tk e detect the presence of plumes in images of various
i resolutions

e zoom in on the plume

XCO2 [ppmv]

=2.55

=2.28
-2.01
—-1.74
=-1.47
=1.20
XCO2 [ppmv] —0.93
i —0.66

—-0.39

=—0.12

Resize Model is fed with randomly cropped images

> learning independent from the resolution of the
plume

> learning less sensitive to the position of the

o1 source (Paris)




Accuracy
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.55

train
validation

10

20

30
Epoch

40

50

60

d  Network is trained from
scratch
[  Overfitting is avoided thanks
to:
- use of dropout layers
- various data
augmentations using
Keras API tools
@  Training time ~ 20mn on
GPU (Nvidia Quadro RTX
5000 16Go)

> Accuracy performance ~ 93%
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Model evaluation: which data are poorly predicted?

Many false negatives:
images with a plume,
evaluated as images with no
plume.

Images with plumes poorly
predicted are:

- full-day plumes
(between 11h and
18h)

high mean plumes
high variance plumes
large (=extending over
a large area)
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Sl Effective wind s )

- Intensity

(2D arrays) - direction : P

XCO2 .
(one hour XCO2 @ Convolutional
earlier) (target) Neural Network

Vector (1D information)
Effective wind __ s
asasummary‘—) S L

e —

Time (one hot
day and hour)

Anthropogenic
plume labelling

Adding data has little effect on accuracy!



'(@- Using more complex models
'\k\-—/

Activation function

e ResNet: idea, learn residual mapping

ommeE) instead of full mapping

Activation function

Weight layer

p RGNS GRS G I (PP R ) (S

-wider -
X X == - e—
r:—:_i_ ——
A regular block (left) and a residual block (right). channels TR, g | =—
i i L_—[_‘,_.l
Dive into deep learning, Zhang et al. e deeper i ‘—ﬁﬁ
i deeper

|
=

. -
-layer i - E

EfficientNet: based on MobileNet ﬁ}resoluﬁmw = g R e ﬁ
and the use of a width-depth-resolution I ‘ [ o

. ) . (a) baseline (b) width (c) depth (d) resolution (e) compound
compound scaling to optimise accuracy o = e Sy

Comparison of different scaling methods. Unlike conventional scaling methods (b)-(d) that arbitrary scale a single
dimension of the network, our compound scaling method uniformly scales up all dimensions in a principled way.

higher
resolution

EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks. Mingxing Tan, Quoc V. Le
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’\@‘ Using more complex models: results
. 7
=

1.0
Weights initialised
0.9 e randomly
e using pre-trained
weights on ImageNet

0.8
>
§ Performance ~ 95%
g o7 validation accuracy with

EfficientNet

—— res random + train
—— res _random + valid
0.6 —— res imagenet + train Huge overfitting!
—— res imagenet + valid

—— efficient random + train
0.5 —— efficient random + valid

0 50 100 150 200 250 300
Epoch
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Next steps
Progress on presence assessment:

> reduce overfitting and improve ability to generalise:
o adddata
o diminish model complexity
o tune model (batch size, regularisation)

Progress on the next tasks:

> plume segmentation task using

o cropped plume presence assessment models

o sophisticated image to image deep learning algorithms
> plume inverse modelling task

o use as additional input segmented plumes
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This presentation reflects the views only of the author, and the Commission cannot be held
responsible for any use which may be made of the information contained therein.

l»] coco2-project.eu
@ @CoCO2_project

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 958927.




